Search results for " Collider"
showing 10 items of 1415 documents
"Figure 11" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron $R_{dA}$ 60-88% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.
"Figure 8" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron RdA 0-20% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.
"Figure 9" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron $R_{dA}$ 20-40% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.
"Figure 7" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron $R_{dA}$ 0-100% d+Au collisions. The nuclear modification factors $R_{dA}$ and $R_{AA}$ for minimum bias $d$+Au and Au+Au collisions, for the $\pi^{0}$ and $e^{\pm}_{HF}$. The two boxes on the right side of the plot represent the global uncertainties in the $d$+Au (left) and Au+Au (right) values of $N_{coll}$ . An additional common global scaling uncertainty of 9.7% on $R_{dA}$ and $R_{AA}$ from the $p+p$ reference data is omitted for clarity.
"Figures 3-6" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron yield, $d$+Au $\implies$ CHARGED X. Electrons from heavy flavor decays, separated by centrality. The lines represent a fit to the previous $p+p$ result [23], scaled by $N_{coll}$. The inset shows the ratio of photonic background electrons determined by the converter and cocktail methods for Minimum Bias $d$+Au collisions, with error bars (boxes) that represent the statistical uncertainty on the converter data (systematic uncertainty on the photonic-electron cocktail).
"Figure 10" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron $R_{dA}$ 40-60% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.
"Figures 1-2" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron yield, Run-8 $p$ + $p$, $d$+Au collisions. Electrons from heavy flavor decays, separated by centrality. The lines represent a fit to the previous $p+p$ result [23], scaled by $N_{coll}$. The inset shows the ratio of photonic background electrons determined by the converter and cocktail methods for Minimum Bias $d$+Au collisions, with error bars (boxes) that represent the statistical uncertainty on the converter data (systematic uncertainty on the photonic-electron cocktail).
H− extraction systems for CERN’s Linac4 H− ion source
2018
Abstract Linac4 is a 160 MeV linear H − accelerator at CERN. It is an essential part of the beam luminosity upgrade of the Large Hadron Collider (LHC) and will be the primary injector into the chain of circular accelerators. It aims at increasing the beam brightness by a factor of 2, when compared to the currently used 50 MeV linear proton accelerator, Linac2. Linac4’s ion source is a cesiated RF-plasma H − ion source. Several beam extraction systems were designed for H − beams of 45 keV energy, 50 mA intensity and an electron to H − ratio smaller than 5. The goal was to extract a beam with an rms-emittance of 0 . 25 π mm mrad. One of the main challenges in designing an H − extraction…
Lead evaporation instabilities and failure mechanisms of the micro oven at the GTS-LHC ECR ion source at CERN
2020
The GTS-LHC ECR ion source (named after the Grenoble Test Source and the Large Hadron Collider) at CERN provides heavy ion beams for the chain of accelerators from Linac3 up to the LHC for high energy collision experiments and to the Super Proton Synchrotron for fixed target experiments. During the standard operation, the oven technique is used to evaporate lead into the source plasma to produce multiple charged lead ion beams. Intensity and stability are key parameters for the beam, and the operational experience is that some of the source instabilities can be linked to the oven performance. Over long operation periods of several weeks, the evaporation is not stable which makes the tuning …
Evidence for the production of three massive vector bosons with the ATLAS detector
2019
A search for the production of three massive vector bosons in proton–proton collisions is performed using data at TeV recorded with the ATLAS detector at the Large Hadron Collider in the years 2015–2017, corresponding to an integrated luminosity of 79.8 fb−1. Events with two same-sign leptons ℓ (electrons or muons) and at least two reconstructed jets are selected to search for . Events with three leptons without any same-flavour opposite-sign lepton pairs are used to search for , while events with three leptons and at least one same-flavour opposite-sign lepton pair and one or more reconstructed jets are used to search for . Finally, events with four leptons are analysed to search for and .…